2013年3月3日星期日
數學觀點看公投門檻: 期待下一代的立法委員學好高中數學 「單調遞增函數」
五年前我寫過一篇 『都是 「非單調遞增函數」 惹的禍 (數學不及格的公投法)』, 以為這個簡單的數學觀察只需要稍微提醒, 數學程度普遍不錯的國人就會恍然大悟, 用輿論促成修法; 沒想到時至今日面對核四公投, 依舊是... 總統唸法律、 行政院長拼經濟, 數學程度不好都可以諒解 (抖); 但就連師大數學系畢業的立法院長也沒注意到這個問題... 只好細細重寫該文, 並且誠懇地拜託今天的高中數學老師把單調函數單元教好, 寄望至少等到下一代執政、 掌權的時候, 我們終於可有一部數學及格的公投法。 然後, 小格及泛科學的讀者, 也許就可以因此而原諒我竟然花這麼大的篇幅來談一個高一數學程度的問題。
一、 單調函數
嚴格單調遞增函數 (或稱 絕對單調遞增函數) 用白話文講, 就是一路往上爬的函數。 換個方式說, 自變量 x 越大, 函數值 f(x) 就越大。 再換個方式說, 越往右邊走, 函數爬越高。 用嚴謹的數學定義來寫, f(x) 成為嚴格單調遞增函數的條件是: 每當 x1 < x2, 必然有 f(x1) < f(x2)。
單調遞增函數 用白話文講, 就是一路都至少不會往下掉的函數。 換個方式說, 自變量 x 越大, 函數值 f(x) 不是變大至少也保持水平。 再換個方式說, 越往右邊走, 函數爬越高, 或至少保持水平。 用嚴謹的數學定義來寫, f(x) 成為嚴格單調遞增函數的條件是: 每當 x1 < x2, 必然有 f(x1) <= f(x2)。
習題:
- 請模仿前兩段, 定義何謂 嚴格單調遞增函數、 何謂 單調遞減函數。 (提示: 先用白話文思考)
- 單調遞增函數跟嚴格單調遞增函數之間有什麼關係? (提示: 先用白話文思考)
- 請舉一個例子, 說明一個函數可能既不是單調遞增函數, 也不是單調遞減函數。 (提示: 先用白話文思考)
- 請舉一個例子, 說明一個函數可能既是單調遞增函數, 又是單調遞減函數。 (提示: 先用白話文思考)
- 加分題: 請用 Venn Diagram (文氏圖、 維恩圖) 圖示以上四類函數之間的關係。
嗯, 本文不附習題解答是故意的。 拜託讀者留言時不要洩露解答 -- 就是要請沒把握的讀者拿本文去請教數學老師。
二、 投票通過門檻函數
考慮一個投票的場合。 如果拿 「贊成人數除以具投票權總人數」 當橫軸, 又拿 「出席人數除以具投票權總人數」 當縱軸, 那麼每個投票結果可以用 單位正方形 上面或內部的一個點來表示。 例如假設全班 50 人, 某次投票有 32 人出席, 有 21 人投贊成票, 那麼這次的投票結果就可以用 (0.64, 0.42) 這個點在這張圖上標示。 顯然, 所有的點都必然落在單位正方形的右下半這個等腰直角三角形內。 (因為贊成人數必然小於或等於出席人數。) 對了, 以某次真實發生的投票的所有可能結果來說, 「具投票權總人數」 是一個常數, 所以以下在比較相對大小時, 有時就直接用 「贊成人數」 取代 「x 座標」, 用 「出席人數」 取代 「y 座標」。
本文只討論簡單的投票情境: 依據投票規則可以用這張圖上的一條固定的線區隔為 「通過」 與 「不通過」 兩區塊 (而不需要加入其他變數) 的狀況。 區隔這兩塊區域的這條線, 姑且稱之為 投票通過門檻函數, 以下簡稱為門檻函數。 從數學的角度來看, 一個合乎情理的投票規則, 它的門檻函數圖形必須具有下列特性:
- 等腰直角三角形的右上角那個點 (代表 「全數贊成」) 應該落在 「通過」 區。
- 等腰直角三角形的下緣這條線 (代表 「零人贊成」) 應該落在 「不通過」 區。
- 門檻函數, 應該是一個單調遞增函數。 意思是: 越多人出席, 通過門檻的人數就應該越高, 或至少相同。 如果違反這條, 會造成 「多一個人來投反對票, 反而讓原本的不通過翻盤成通過」 的荒謬現象。
- 門檻函數, 最好近似一個連續函數。 意思是: 不要因為出席人數差一人, 投票通過門檻的人數就突然大幅上下跳動。 門檻函數如果違反這條特性, 那麼當 「具投票權總人數」 越大時, 「少數人出席與否 (跟他們投什麼票無關) 將決定投票結果」 的荒謬現象會越明顯。 (這一點, 雖然用微積分的術語會比較容易談, 但其實就算不懂微積分還是可以用常識理解。)
這條函數越高, 意謂著通過門檻越高; 這條函數越低, 意謂著通過門檻越低。 到底門檻多高或多低才合理, 那並不能只靠數學分析來回答, 所以那並不是本文討論的重點。 但不論門檻高低, 如果一條函數不能滿足上述四點, 它顯然就是一個數學不及格的門檻函數。
三、 一些例子
右圖是門檻函數的一些例子。
- (A) 是一個最簡單的門檻函數: 不管多少人出席, 總之出席人數當中, 過半贊成就通過。 但有人會擔心它的門檻過低。
- (B) 是一個很嚴格的門檻函數: 不管多少人出席, 總之具投票權總人數當中, 過半贊成才通過。 但這意味著: 不關心投票議題或因為其他原因而不出席的人通通被算成反對。 也就是說, 投票結果永遠傾向 「不通過」; 正面或反面設定議題, 將改變雙方優劣勢。
- (C) 是也是一個很嚴格的門檻函數: 不管多少人出席, 總之出席人數當中, 超過 2/3 贊成才通過。 但這有可能造成 minoritarianism (少數專斷) -- 少數的反對可以否決多數支持者的意見, 因而正反面設定義題也會造成雙方有優劣勢之別。
- (D) 超過一定比例 q (例如 1/4) 出席, 而且出席人數當中超過一個浮動比例贊成, 才通過。 這個浮動比例從 x=q 時的 100% 逐漸降到 x=1.00 時的 50%。
- (E) 效果類似 (D), 但用一條圓滑曲線取代兩段直線, 例如 y=-0.5x^2+x。 這個函數具有以下特性: 當 x=0 時, y=0; 當x=1 時, y=0.5; 它在這個範圍內嚴格單調遞增; 它在 (0,0) 的切線正好是 y=x。
- (F) 我們的公投法。 違反第二節所講的門檻函數第三、 第四兩個特性, 所以同時具有上述兩大荒謬現象; 而所有的公投拉票與辯論活動也將註定經常會離題失焦。 它很容易被政客扭曲操作, 讓大眾忘記原始議題。 最後, 當投票率低於 50% 時, 它跟 (B) 一樣, 門檻高到毫無道理; 當投票率超過 50% 時, 它卻又跟 (A) 一樣, 毫無門檻效果可言。 看完這篇之後, 還能開口支持 (F) 的人, 不是高中數學不及格就是別有居心, 以為聽他講話的人都是很好騙的數學白癡。
四、 結語
從數學的角度來看, (A) 其實是比較對稱的 -- 不會有 「議題正反面設定」 的爭議, 也比較符合 奧卡姆剃刀 原理。 但如果害怕低投票率時門檻過低, 又不希望高投票率時讓少數人有專斷的機會, 而且也不太介意 「議題正反面設定」 有一點差別 (以致允許政客有一些操弄的空間) 那麼 (D) 或 (E) 之類的函數可能是比較理想的門檻函數。
改採 (D) 或 (E) 類型的門檻函數, 比較大的現實挑戰是: 那些沒有達到高一數學程度的公民, 恐怕很難理解。 話說回來, 經過這篇文章提醒之後, 那些數學程度超過高中的公民, 恐怕更難接受現在這個明顯數學不及格的公投法 (F)。 最終, 我們會不會改成 (D) 或 (E) 或其他至少符合三、 四特性的門檻函數? 或是我們會維持 (F), 讓其他國家及後世嘲笑臺灣人數學教育的失敗? 這個問題的答案, 也將透露我們的政府/民意代表/媒體/老師到底是致力於培力 (empower) 公民, 或是致力於愚民。
* * * * *
手邊沒電腦; 口頭推薦本文嗎? 可以請您的朋友搜尋 「」 或 「」。
果然數學不及格
沒有留言:
張貼留言